Part Number Hot Search : 
EKZM160 32ASG TEGRA 28452 I533ERW 24W04 NJU7507D 25DC48V
Product Description
Full Text Search
 

To Download ACA2601RS29P8 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ACA2601
Fiber-to-the-Home RF Amplifier
PRELIMINARY DATA SHEET - Rev 1.4
FEATURES
* * * * * 50 - 870 MHz Operating Frequency High Linearity: 65 dBc CTB/CSO (79 Chan.) Low Equivalent Input Noise: 4.5 pA/rtHz 20 dB Gain Adjust 400 Differential Input Impedance: No Transformer Required for Interface to Photodiode Single +5 V Supply 5 mm x 5 mm x 1 mm Surface Mount Package RoHS Compliant Package
* * *
APPLICATIONS
* FTTH RF Amplifier Used in Conjunction With Triplexer in Fiber-Coax Line Terminals
S29 Package 28 Pin QFN 5 mm x 5 mm x 1 mm
PRODUCT DESCRIPTION
The ANADIGICS ACA2601 amplifier for Fiber-to-theHome (FTTH) applications is intended to be used in conjunction with the triplexer in fiber-coax line terminals. The device is driven by, and amplifies the output of, the video downstream path photodiode. The high-impedance input of the ACA2601 eliminates the need for a costly transformer usually needed to interface to the photodiode, and a low equivalent input noise level offers excellent sensitivity. The device provides sufficient linearity to
Supply
maintain low CTB and CSO levels in full-bandwidth (132 channel) systems, even across a wide gain adjustment range. The ACA2601 is manufactured using ANADIGICS's proven MESFET technology that offers state-of-theart reliability, temperature stability and ruggedness. The device operates from a single +5V supply and is offered in a 5 mm x 5 mm x 1 mm surface mount package.
Attenuator Control
Matching Circuit
LNA
Voltage Controlled Attenuator
Output Amplifier 1:1 Transmission Line Balun
RF Output
ACA2601
Figure 1: Application Block Diagram
01/2006
ACA2601
VCC_AGC VCC_IN1 GND GND 22 VAGC
NC
28
27
26
25
24
NC RFIN1 NC GND NC RFIN2 NC
1 2 3 4 5 6 7
10 11 12 13 14 8 9
23
NC
21 20 19 18 17 16 15
VCC_OUT1 RFOUT1 GND GND GND RFOUT2 VCC_OUT2
VCC_IN2
IADJ_IN
GND
GND
GND
Figure 2: Pinout (X-ray Top View) Table 1: Pin Description
PIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2
NAME NC RFIN1 NC GND NC RFIN2 NC VCC_IN2 GND IADJ_IN GND NC GND GND
DESCRIPTION No Connection RF Input 1 No Connection Ground No Connection RF Input 2 No Connection Input Stage Supply 2 Ground Input Stage Current Adjust Ground No Connection Ground Ground
PIN 28 27 26 25 24 23 22 21 20 19 18 17 16 15
GND
NC
NAME VCC_IN2 NC VAGC GND VCC_AGC NC GND VCC_OUT1 RFOUT1 GND GND GND RFOUT2 VCC_OUT2
DESCRIPTION Input Stage Supply 1 No Connection AGC Control Input Ground AGC Supply No Connection Ground Output Stage Supply 1 RF Output 1 Ground Ground Ground RF Output 2 Output Stage Supply 2
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
ACA2601
ELECTRICAL CHARACTERISTICS
Table 2: Absolute Minimum and Maximum Ratings PARAMETER Supply Voltage (VCC) AGC Voltage (VAGC) RF Input Power (PIN) Storage Temperature MIN 0 0 -65 MAX +8 +5 +25 +150 UNIT V V dBmV C
Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.
Table 3: Operating Ranges
PARAMETER Operating Frequency (f) Supply Voltage (VCC) RF Output Power (POUT) Case Temperature (TC) MIN 50 -40 TYP +5 +18 MAX 870 +110 UNIT MHz V dBmV C COMMENTS
The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
3
ACA2601 Table 4: Electrical Specifications (TA = +25 C, POUT = +18 dBmV, VCC = +5 V, 75 system, see Figure 3)
PARAMETER RF Gain over Temperature Gain Tilt VAGC = +3.0 V VAGC = +0.5 V Gain Tilt over Temperature VAGC = +3.0 V VAGC = +0.5 V
(1), (2) (2) (1)
MIN 20 0.5 2.5 0 2.25
(1), (3)
TYP 20.7 1.5 3.5 1.5 0.7 0.5 22 -65 -65 4.5 5 400 18 230 18
MAX 2.0 4.5 3.0 4.75 1.5 1.0 +3.0 -60 5.5 6 295 25
UNIT dB
COMMENTS at 550 MHz
dB
dB
Gain Flatness over Temperature VAGC = +3.0 V VAGC = +0.5 V Gain Adjustment Range Gain Adjust Control Voltage CTB
(5)
20 +0.5 +47 16 15 -
dB dB V dB c dB c dB m pA/rtHz pA/rtHz differential differential, 75 system Max. gain at +3.0 V 79 Channels 79 Channels
CSO (5) OIP2
(7)
Equivalent Input Noise (EIN) (4) EIN over Temperature Input Impedance Output Return Loss (1), (6) -30 oC to +85 oC +85 oC to +100 oC Current Consumption (1) Thermal Resistance
(1), (4)
dB mA
o
C/W
Notes: (1) Package slug temperature range of -30 to +100 oC. (2) Recorded tilt of the calculated best fit straight line from 50 to 870 MHz. (3) Flatness is the peak-to-peak deviation from the calculated best fit straight line. (4) Measured using application circuit with photodiode, as shown in Figure 16. (5) Measured at +18 dBmV output power, with 14 dB gain reduction. (6) Over the 50 to 870 MHz Frequency band. (7) Measured using two tones at 379.25 and 301.25 MHz, -12 dBm output power per tone, with 14 dB gain reduction.
4
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
ACA2601
+5V
0.01 uF
+5V
0.01 uF
680 nH
270 nH 180 pF
470 pF
18 nH 18 nH Atten
RF Input
4:1 Balun
470 pF
1:1 Balun
180 pF
RF Output
680 nH 270 nH 0.01 uF 0.01 uF
+5V VAGC
+5V
Figure 3: Test Circuit
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
5
ACA2601
PERFORMANCE DATA
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 4: Gain vs. Frequency (TA = +25 oC, VCC = + 5 V)
40
35
30
25
20
15
Vagc=3.0V Vagc=2.5V Vagc=2.0V Vagc=1.9V Vagc=1.8V Vagc=1.7V Vagc=1.6V Vagc=1.5V Vagc=1.3V Vagc=1.0V Vagc=0.5V Vagc=0.0V
Gain (Amps/Watt)
10
5 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
Figure 5: Output Return Loss vs. Frequency (TA = +25 oC, VCC = + 5 V)
-5
-10
Output Return Loss (dB)
-15 Vagc=3.0V Vagc=2.5V Vagc=2.0V Vagc=1.9V Vagc=1.8V Vagc=1.5V Vagc=1.0V Vagc=0.0V
-20
-25
-30
-35
-40 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
6
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 6: Gain Flatness To Best Fit Line over Temperature (VCC = + 5 V, VAGC = +3.0 V)
2
1.5
1
Gain Flatness (dB)
Temperature 0.5 +115C +100C +60C +40C +15C -5C -25C -35C
0
-0.5
-1
-1.5
-2 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
Table 5: Gain Flatness to Best Fit Line (VAGC = +3.0 V)
Temp (oC) 115 100 60 40 15 -5 -25 -35 Tilt (dB) 3.5 3.8 4.4 4.7 5 5.2 5.4 5.6 Flatness (dB) 2 1.8 1.5 1.4 1.3 1.2 1.2 1.3
The best fit line is calculated using the least mean squares method:
y = m x +b
m=
(x y )- x
2
x y
n ( x )2 n
-
b=
y - m x
n n
n = number of points
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
7
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 7: Output Return Loss over Temperature (VCC = + 5 V, VAGC = +3.0V)
0
-5
Output Return Loss (dB)
-10
-15
-20
-25
+115C +100C +60C +40C +15C -5C -25C -35C
-30
-35
-40 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
8
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 8: Gain Flatness To Best Fit Line over Temperature (VCC = + 5 V, VAGC = +1.6 V)
2
1.5
1
Gain Flatness (dB)
0.5
+115C +100C +60C +40C +15C -5C -25C
0
-0.5
-35C
-1
-1.5
-2 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
Table 6: Gain Flatness to Best Fit Line (VAGC = +1.6 V)
Temp (oC) 115 100 60 40 15 -5 -25 -35 Tilt (dB) 3.8 4.1 4.7 5.1 5.5 5.8 6 6 Flatness (dB) 2.3 1.9 0.9 1.2 1.6 1.9 1.9 1.6
The best fit line is calculated using the least mean squares method:
y = m x +b
m=
(x y )- x
2
x y
n ( x )2 n
-
b=
y - m x
n n
n = number of points
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
9
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 9: Output Return Loss over Temperature (VCC = + 5 V, VAGC = +1.6 V)
0
-5
Output Return Loss (dB)
-10
-15
-20
-25
+115C +100C +60C +40C +15C -5C -25C -35C
-30
-35
-40 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
10
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 10: Gain Flatness To Best Fit Line vs. Frequency over Temperature (VCC = + 5 V, VAGC = 0 V)
2
1.5
1
Gain Flatness (dB)
0.5
0
-0.5
+115C +100C +60C +40C +15C -5C -25C -35C
-1
-1.5
-2 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
Table 7: Gain Flatness to Best Fit Line (VAGC = 0 V)
Temp (oC) 115 100 60 40 15 -5 -25 -35 Tilt (dB) 5.4 5.7 6.1 6.3 6.6 6.8 6.9 7 Flatness (dB) 1.2 1.2 1.1 1.1 1.1 1.2 1.3 1.5
The best fit line is calculated using the least mean squares method:
y = m x +b
m=
(x y )- x
2
x y
n ( x )2 n
-
b=
y - m x
n n
n = number of points
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
11
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 11: Output Return Loss over Temperature (VCC = + 5 V, VAGC = 0 V)
0
-5
Output Return Loss (dB)
-10
-15
-20
-25
+115C +100C +60C +40C +15C -5C -25C -35C
-30
-35
-40 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
12
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 12: CTB vs. Frequency (TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading, Optical Input Power = 0 dBm, RF Output Power = +18 dBmV)
-50
-55
-60
CTB (dBc)
-65
-70
-75
-80 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
Figure 13: CSO vs. Frequency (TA = +25 oC, VCC = + 5 V, 132 Analog Channel Loading, Optical Input Power = 0 dBm, RF Output Power = +18 dBmV)
-50
-55
-60
CSO (dBc)
-65
-70
-75
-80 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
13
ACA2601
All performance data measured using application circuit with input photodiode, as shown in Figure 16.
Figure 14: Equivalent Input Noise vs. Frequency (TA = +25 oC, VCC = + 5 V, VAGC = +3.0)
6
5
Equivalent Input Noise (pA/rtHz)
4
3
2
1
0 0 100 200 300 400 500 600 700 800 900 1000
Frequency (MHz)
Figure 15: Equivalent Input Noise over Temperature (VCC = + 5 V, VAGC = +3.0)
7
6
Equivalent Input Noise (pA/rtHz)
5
4
+115 degC +100 degC +60 degC +40 degC +15 degC
3
-5 degC -25 degC
2
1
0 0 100 200 300 400 500 600 700 800 900
Frequency (MHz)
14
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
+5 V C15 C16 C14 C12
VAGC
+5 V
APPLICATION INFORMATION
L8 L7 L9 C13
28
27
26
25
24
23
NC
GND
VCC_IN1
1
VCC_AGC NC GND
R1 C2
2
VAGC
22
NC VCC_OUT1 RFOUT1 GND GND GND ACA2601 RFOUT2 VCC_OUT2
17 16 15 18 19 20
21
C10 T1 C11 C9 MABAES0029
L1
3
L3 NC GND NC RFIN2 NC C1
5 4
RFIN1
RF Output (75 Ohms)
D1
C3
6 7
L2
L4
IADJ_IN
GND NC
GND
13
VCC_IN2
8
9
10
11
12
14
Figure 16: Application Circuit with Input Photodiode
GND GND
R2
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
L6 C5 L5 C7 C4 +12 V C6 +5 V +5 V C8
ACA2601
15
ACA2601 Table 8: Evaluation Board Parts List
R EF C11 C1 C 9, C 10 C 2, C 3 C5 C 6, C 7, C 12, C 13, C 15, C 16 C4 C 14 C8 L1, L2, L3, L4 L5, L8 L6, L7 L9 R1, R2 T1 D1 Connector DESCRIPTION 0.5 pF; 0603 Cap 1 pF ; 0603 C ap 180 pF ; 0603 C ap 470 pF ; 0603 C ap 1000 pF ; 0603 C ap 0.01 F; 0603 Cap 0.1 F; 0603 Cap 1 F ; 0603 C ap 47 F; Elect. Cap 25 V 27 nH; 0603 Ind 180 nH; 0603 Ind 270 nH; 0603 Ind 820 nH; 1008 Ind 1 k; 0603 Res 1:1 Balun Transformer; 0603 C ap Analog Photodiode 75 N Male Panel Mount QTY VENDOR 1 1 2 2 1 6 1 1 1 4 2 2 1 2 1 1 1 Murata Electronics Murata Electronics TDK Corporation Murata Electronics Murata Electronics Murata Electronics Murata Electronics Murata Electronics Panasonic-ECG Coilcraft Coilcraft Coilcraft Panasonic Panasonic-ECG M/A-COM ANADIGICS Pasternack Enterprises VENDOR PART NO. GRM1885C1HR50CZ01D GRM1885C1H1R0CZ01D C1608C0G1H181J GRM155R71H471KA01D GRM1885C1H102JA01D GRM1885C1HR50CZ01D GRM188F51C104ZA01D GRM188R61C105KA93D ECA-1EM470B 0603CS-27NXJB 0603CS-R18XJB 0603CS-R27XJB ELJ-NCR82JF ERJ-3EKF1001V MABAES0029 PD070-HL1-300 or PD070-HL2-300 P E 4504
16
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
ACA2601
PACKAGE OUTLINE
Figure 17: S29 Package Outline - 28 Pin 5 mm x 5 mm x 1 mm QFN
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
17
ACA2601
NOTES
18
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
ACA2601
NOTES
PRELIMINARY DATA SHEET - Rev 1.4 01/2006
19
ACA2601
ORDERING INFORMATION
ORDER NUMBER TEMPERATURE RANGE -40 C to +110 C PACKAGE DESCRIPTION RoHS-Compliant 28 Pin QFN 5 mm x 5 mm x 1 mm COMPONENT PACKAGING
ACA2601RS29P8
Tape and Reel, 2500 pieces per Reel
ANADIGICS, Inc.
141 Mount Bethel Road Warren, New Jersey 07059, U.S.A. Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132 URL: http://www.anadigics.com E-mail: Mktg@anadigics.com IMPORTANT NOTICE
ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.
WARNING
ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.
20
PRELIMINARY DATA SHEET - Rev 1.4 01/2006


▲Up To Search▲   

 
Price & Availability of ACA2601RS29P8

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X